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Abstract 

Traditionally, the governing equations for transient analysis of gas pipeline network involve two partial differential equations, which are 
normally solved by complex numerical methods. Following the success of its application in the steady analysis of pipeline networks, the 
electric analogy method is extended by combining resistance and capacitance, which leads to a first order ordinary differential equation and 
an alternative route to solving the transient problem. Solving the proposed first order ordinary differential equation has been shown to be 
much simpler than having to solve the set of partial differential equations normally encountered in other transient models. It is found that the 
results obtained are comparable to those obtained from the traditional methods published in the literature. The proposed method is computa- 
tionally efficient and is readily applicable as a method for design and control of network systems. 0 199X Elsevier Science S.A. 
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1. Introduction 

Steady state analysis of gas pipeline networks is relatively 
simple to implement but it is not often applied to operational 
gas transmission systems. This is because in a real network, 
demands and pressures vary more or less constantly and the 
system is never at steady state. Fast transients are especially 
important in the event of compressor breakdowns, or during 
peak consumption periods. Under such situations, the supply 
may not be sufficient to hold all pressures at their demand 
values. but by allowing the pressure to reduce at certain points 
in the system, extra gas can be made available in other parts 
of the network. Transient analysis is therefore valuable as a 
design tool, and is also useful from an operating viewpoint. 

Typically, models for transient analysis of a pipe are based 
on the continuity and momentum equations [ 11. From a 
mathematical point of view, these equations for transient 
pipeline network analysis are a set of partial differential equa- 
tions with pressure and mass or volumetric flow rate as the 
dependent variables, and with space and time as the inde- 
pendent variables. The equations are basically hyperbolic, 
but can be transformed into parabolic if appropriate assump- 
tions are made. The algorithms available for solving the par- 
tial differential equations are based on the implicit, explicit 
finite difference methods or the method of characteristics 
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(MOC) [ I-31. These methods have been shown to be suc- 
cessful in dealing with transient flow in pipeline networks 
and have been used for decades but they have disadvantages 
implicit in the solution of the partial differential equations. 
In the present paper, a completely different approach, based 
on an electrical analogy, is used to model transients in pipe- 
line networks. 

2. Electrical analogies 

The analogies between fluid and electrical networks have 
long been realised [4,5] and they have been applied suc- 
cessfully in the simulation of steady state pipeline network 
systems [ 61. It is known from electrical circuit theory that 
relationships between voltage and current can be attributed 
to three basic elements, viz.. resistance, capacitance and 
inductance. Similarly, because of the basic analogies between 
electrical circuits and fluid networks, the same three basic 
elements are also present in the fluid networks [ 4,5,7] (A.E. 
Fincham, London Research Station, British Gas, private 
communication). 

The resistance effect in a pipeline network is due to several 
factors, such as the roughness and geometry of the pipes, the 
viscosity of the fluid and the fluid flow rate. The capacitance 
effect of a pipeline network is directly attributable to the 
compressibility of fluid. It has been suggested that the induc- 
tance effect of a pipeline network is due to the kinetic energy 
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of fluid [ 11 (A.E. Fincham, London Research Station, British 
Gas, private communication). It is this capacitance phenom- 
enon which is exploited in the present paper to produce an 
alternative method of transient analysis. 

For the analysis of transient gas flow, the most important 
parameters are gas compressibility and viscosity. They are 
analogous to capacitance and resistance respectively. The 
effect of inductance, which correspond:, to kinetic energy of 
gas, can be neglected because it is believed to be too small to 
be compared with resistance and capacitance effects [ 11. 

According to electrical circuit theory, the equations for an 
R-L-C network are a set of second order ordinary differential 
equations and that for an R-C network are a set of first order 
ordinary differential equations. Hence, the transient pipe net- 
work can be modelled as a set of first order ordinary differ- 
ential equations if the suitable analogous model for resistance 
and capacitance are developed. 

3. Model of basic elements 

3. I. Resistance model 

The relationship between resistance, pressure drop and 
flow rate are governed by the Ohm’s; Law which can be 
represented by: 

V=ZJ for the Mesh approach, (1) 

J= YV for the Nodal approach. (2) 

Impedance and admittance are related as follows: 

y2 
Z 

(3) 

The exact mathematical model for resistance in a pipe 
network depends on the choice of equation describing the 
relationship between pressure drop and flow rate. If the Wey- 
mouth equation is used, the resistance for acompressible fluid 
distribution system has the following form [ 21: 

PlfP2 Y= 1.52x 10” D16’” - 
LTSzQ 

3.2. Capacitance model 

For the capacitance effect in a pipeline network, the rela- 
tionship between capacitance, pressure and flow rate can have 
either of the following forms [ 81: 

V= H 
I 

J dt for the Mesh approach, (5) 

J= &$ for the Nodal approach, (6) 

where G is the capacitance and H is the elastance, which are 
related as follows: 

It is known [7] from fundamental analogy that in general 
terms capacitance has the following form: 

Capacitance = 
A (quantity) 
A (potential) 

According to the above definition and if ideal gas law is 
applied, the capacitance effect in gas pipeline network can be 
modelled as: 

GXd?E 
AP pzRT 

4. Derivation of mathematical model 

(9) 

In order to derive the unsteady state mathematical model 
for pipe networks, some of the fundamental assumptionsused 
in the conventional method must be applied. These assump- 
tions are one dimensionality and isothermal flow, the steady 
state friction factor equation be applicable to transient flow 
and the contribution due to inductance being negligible [ 1,3]. 

As mentioned above, resistance and capacitance are the 
key contributing elements in the analysis of transient gas 
pipeline network systems. A typical branch of a fluid network 
with transient flow is proposed and is shown in Fig. 1. 

It can be seen from Fig. 1 that the resistance and capaci- 
tance are connected in parallel. Based on this model, the 
following relationships can be established: 

P i 

Fig. 1. Structure of a branch. 
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V=ES-e (10) 

J=I+i (11) 

J=J, +J2 (12) 

Using the Nodal approach [ 9,101 by expressing Eqs. (2) and 
(6) in tensorial form, gives, 

$= PbVb (13) 

(14) 

Applying the transformation theory [ 61: 

S=A”,Jb=AY,(fl+,) =A’, 
[ 

dVb ybbVb+Gbt’x 1 (15) 
and since 

Vb=A;Vs (16) 

substituting Eq. ( 16) into Eq. ( 15)) the following equation 
is obtained 

JS=A’: 
b 

ybbA.“v +GbbA.SdV’ 
b s b dt I 

=A~b~bAh‘Vs+Al,GbbAh’~ (17) 

Eq. ( 17) can be expanded to its open and close path frame- 
work becoming: 

dVo 
+ AA ybb[A."(A~C] dt 1 I A?, b b L-1 dV c 

dt 

(18) 

It is possible to transform Eq. ( 10) from the primitive frame- 
work to the orthogonal framework, giving 

vo=&+e,=c~bEb+e, (19) 

V, = E, = C; bEb (20) 

For an invariant pressure source Eb (i.e., the pressure 
source is constant with time), then the ‘derivation can be 
simplified and Eqs. ( 19) and (20) be differentiated as 
follows: 

dV, de, -=- 
dt dt 

(21) 

dvc -= 0 
dt 

(22) 

Expanding Eq. ( 18) and incorporating Eqs. (2 1) and (22)) 
results in 

~=AY,~bA,oVo+A’b~bA~cVc+A~bGbbA;o~ (23) 

de, J” = ktob pbAho V, + AYb pbA;’ V, + A?,GbbA,” z (24) 

Incorporating Eqs. ( 19) and (20), into Eqs. (23) and (24) 
results in: 

J” =AFb p’Ab“( CbbEb + e,) 

+A: 
de 

b Y+‘bA.CC‘bE +A: GbbA.=> b c b b b dt 

P = A’Tb pbAko( CibEb + e,) 

de, +A”, ~b&c’C;b&, +A‘?,Gbb&’ yy 

(2-5) 

(26) 

(26) 

Rearranging Eq. (26) results in: 

+ A?b ~bA;cc;b&] (27) 

Eqs. (25) and (27) are essentially thegovemingequations 
for transient gas pipe network systems. They are a set of first 
order ordinary differential equations. Hence the transient gas 
network flow problem, governed by the set of two partial 
differential equations, can be solved by a set of first order 
ordinary differential equations which are much easier to han- 
dle than the aforementioned partial differential equations. 
However these equations cannot be solved analytically and 
must be solved numerically. 

For a network with known topology, tensors AT’,, Aho, A?,, 
AbC, Cbb and Cib can be determined easily. So in a gas trans- 
mission system with varying demand P, (i.e., .P =f( t) ) , the 
effect of changing .P on e, can be determined by solving Eq. 
(27) which is a set of ordinary differential equations. Once 
the dynamic change of e, is known, J” can be calculated from 
Eq. (25). After e, and P are found, the branch flows and 
nodal pressures of the network at any given time can be 
obtained through the application of the transformation 
techniques. 

5. Computational scheme 

Recalling that dependent variables in a transient flow sys- 
tem are space and time, the space variable can be fixed, if the 
connection data of the pipeline network is known. 

Once the topology of pipeline network is determined, 
steady state analysis of pipeline network can be carried out 
to determine the initial values of branch flow rates and nodal 
pressures, which are then used to solve the ordinary differ- 
ential equation. Steady analysis of a network can be based 
either on Mesh method or its dualistic Nodal method. A 
general guide for selecting the most suitable method is dis- 
cussed in the previous papers [ 61 and can be utilized herein. 
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Fig. 2. Computational flow chart 

Once the steady state analysis has been completed, transient 
calculation can begin using the general solution method for 
ordinary differential equations such as the fourth order Runge 
Kutta method. The detailed computation scheme is outlined 
in Fig. 2. 

6. Results and discussion 

Fig. 3. Sample network. 

Table 1 
Pipe data of sample network 

Pipe From To Diameter (m) Length (m) 

1 1 3 0.6 80,000 
2 1 2 0.6 90,000 

3 2 3 0.6 100,000 

“0 2 4 6 8 16 
TZe (:2360&) 

18 20 22 24 

Fig. 4. The demand curves at nodes 2 and 3. 

To illustrate the validity of the mathematical model derived 
previously, a simple pipe network which was previously ana- 
lysed by Osiadacz [2] is solved in this study. This sample 
network is shown in Fig. 3, and the physical data are as in 
Table 1. 

Node 1 is the pressure source with a constant pressure of 
5 MPa. The loads at nodes 2 and 3 varied in accordance with 
the curves depicted in Fig. 4. 

The pressure drop equation used 1.n the program is the 
Weymouth equation having the following values of para- 
meters: f= 0.003; density of gas under standard condition, 
pn= 0.73 kg/m3 and S=O.6. The compressibility factor is 
determined by using the following, 

where (Y is a constant dependent on temperature and is taken 
fromRef. [ll]. 

For the purpose of this study, a computer program has been 
written to run on a Pentium PC with Microsoft FORTRAN 
77 compiler. The computation time for solving this example 
ranges from less than 1 s to 3 min depending on the time steps 
used. The simulated result using the present model as well as 
the results extracted from the literature are shown in Figs. 5 
and 6. It can be seen that the results obtained by using the 
present method are comparable with that from the literature. 
The deviation is less than 2% and this slight difference is 
believed to be due to a different pressure equation being used. 
Furthermore, Osiadacz used a constant compressibility factor 
for the whole range of his calculation, while the compressi- 



W.Q. Tac: H.C. Ti/ Chemical Engineering Journul69 (1998) 47-52 51 

j  
/ : / 
: : i : .-Literature 

: 
j  i j  

4.7 : : : j  j  / . ---- Calculated 

0 4 8 12 16 20 24 28 32 36 40 44 48 
Time (x 1800 s) 

Fig. 5. The variation of pressure at ncde 2. 
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Fig. 6. The variation of pressure at node 3. 

bility factors in this study are calculated at each time interval 
in anticipation of a more accurately predicted result. 

In the present study, the effect of space discretization is 
also examined. Simulation results with all pipes being divided 
into two equal parts and five equal sections are calculated 
respectively. A comparison of these results shows that space 
discretization has a negligible effect on the precision of sim- 
ulation result. 

Furthermore, it is found that the time stlsp also has a neg- 
ligible effect on the simulation result. However, it is noted 
that both space and time discretization have noticeable effect 
on the computation effort involved. The finer the space or 
time steps are, the more computation effort is required. If the 
time step is too large, especially when the demand varies 
sharply at a node, errors may occur. Hence, for large scale 
gas pipe networks, a balance has to be struck between the 
required number of data points and the computation cost. 

The reason for the computational error is due to the stability 
of Runge Kutta method and not the mathematical model. This 
computation error can be avoided by applying a more sophis- 
ticated algorithm, such as variable step Runge Kutta algo- 
rithm in the program. 

In the previous derivation, a specific case of the pressure 
source being constant with time is considered. But the math- 

ematical model need not be limited to this specific condition. 
Under the situation that the pressure source varies with time, 
the differentiation of V, and V, with respect to time has the 
following forms: 

dvc l,=c;h2 (30) 

Upon substitution, the following governing equations are 
obtained, 

f =A:h p’A,O( Cob&, + e,) +A?, PbAic C;lhEh 

d’% + (A’bGhbA~“C~h+AShGhhA~CC~h) dt 

2= (AOhGbhAJ - ’ P-A?‘, yb’Ab”( CibEh + e,) 

- AUb GbhA,CC,hEb - ( AYh GhhA;“C,b 

(31) 

Hence, the system equations for the situation when pressure 
source is one of the causes for transients will be Eqs. (3 1) 
and (32). Unfortunately, due to the lack of comparison data, 
the validity of this more general model has yet to be evaluated. 

The derivation of the system equations in the present paper 
is based on the Nodal approach. Because of the dualism that 
exists between the Nodal approach and Mesh approach, it is 
obvious that the counterpart of the present model can also be 
derived. However, as the dual of differentiation is integration, 
the mathematical model based on mesh approach will contain 
integration parts. From a mathematical point of view, solving 
a series of ordinary differential equations is much easier than 
solving a series of equations which contain integration parts. 
While the integration parts may be transformed into ordinary 
differential form through proper techniques, additional effort 
is required. So the nodal approach is preferred in the transient 
analysis of gas transmission system. 

7. Conclusion 

Traditional methods for transient analysis of gas flow in 
pipeline network require considerable computing effort, 
which hinders the practical application of transient analysis 
in gas transmission systems. The findings of the present work 
shows clearly that advantages can be achieved by using the 
electric analogy method for the computation of solutions to 
transient gas transmission system. Instead of having to handle 
the original partial differential equations, a set of first order 
ordinary differential equations can be solved in their place, 
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and thus significant reduction in the computation times can 
be achieved. Another advantage of the present model is that 
the iteration process is only required in the part of a steady 
state analysis. It has been demonstrated that steady state anal- 
ysis through the transformation method is extremely robust, 
and it is especially suitable for handling initial value prob- 
lems. The method is straight forward, and no convergence 
problems exist. 

8. Nomenclature 

A 

C 

J 

D 
E 

e 

f 
G 

H 

I 

i 

J 

L 
M 
AP 
pi7 p2 
PW.2 
12 

R 
s 

Transformation tensor used for the nodal 
approach 
Transformation tensor used for the mesh 
approach 
Contravariant tensor for total flow on a branch or 
path, m3/s 
The pipe diameter, m 
Covariant tensor for pressure developed by an 
active source across a branch or path, MPa 
Covariant tensor for pressure across a branch or 
path, MPa 
The friction factor, dimensionless 
Contravariant tensor for capacitance used in 
transient nodal approach, m’/MPa 
Contravariant tensor for elas Lance, used in nodal 
approach, MPa/m3 
Contravariant tensor for flow due to external 
input-output on a branch or path, m3/s 
Contravariant tensor for flow, due to other cause 
on a branch or path, m3/s 
Contravariant tensor for total flow on a branch or 
path, in primitive framework, J=I+ i, m3/s 
Length of a pipe, m 
Molecular weight of gas, kg/‘kmol 
Pressure drop across a pipe, MPa 
The pressure at the nodes, MPa 
Average pressure of a pipe, MPa 
Volumetric flow rate of gas at standard state, 
m3/s 
Gas constant, 8.3143 kJ/kmol K 
The specific gravity of gas, ii: is the ratio of 
densities between gas and air, dimensionless 

T Temperature of gas, K 
V Covariant tensor for total pressure, in primitive 

framework, V= E+ e, MPa 

VP Volume of pipe, m3 
Y Contravariant tensor for admittance, used in 

nodal approach, m’/s MPa 
Z Covariant tensor for impedance, used in mesh 

approach, MPa s/m3 
Z Compressibility factor of gas, dimensionless 

P Density of gas, kg/m” 

index nomenclature 

b Index used in tensor form, indicating the tensor 
to be in primitive framework 

S Index used in tensor form, indicating the tensor 
to be in orthogonal framework 

C Index used in tensor form, indicating the tensor 
to be in closed path framework 

0 Index used in tensor form, indicating the tensor 
to be in open path framework 
Position dot, it is used to indicate the order of 
occurrence of the indices 
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